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As an important indicator of autonomic regulation for circulatory function, Heart Rate Variability (HRV) is widely used for
general health evaluation. Apart from using dedicated devices (e.g, ECG) in a wired manner, current methods search for a
ubiquitous manner by either using wearable devices, which suffer from low accuracy and limited battery life, or applying
wireless techniques (e.g., FMCW), which usually utilize dedicated devices (e.g., USRP) for the measurement. To address
these issues, we present RF-ECG based on Commercial-Off-The-Shelf (COTS) RFID, a wireless approach to sense the human
heartbeat through an RFID tag array attached on the chest area in the clothes. In particular, as the RFID reader continuously
interrogates the tag array, two main effects are captured by the tag array: the reflection effect representing the RF-signal
reflected from the heart movement due to heartbeat; the moving effect representing the tag movement caused by chest
movement due to respiration. To extract the reflection signal from the noisy RF-signals, we develop a mechanism to capture
the RF-signal variation of the tag array caused by the moving effect, aiming to eliminate the signals related to respiration.
To estimate the HRV from the reflection signal, we propose a signal reflection model to depict the relationship between the
RF-signal variation from the tag array and the reflection effect associated with the heartbeat. A fusing technique is developed
to combine multiple reflection signals from the tag array for accurate estimation of HRV. Experiments with 15 volunteers show
that RF-ECG can achieve a median error of 3% of Inter-Beat Interval (IBI), which is comparable to existing wired techniques.
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1 INTRODUCTION

1.1 Motivation
Heart Rate Variability (HRV) represents the variation of the time interval between adjacent heartbeats [7]. As
an important indicator of autonomic regulation for circulatory function, HRV reflects how the cardiovascular
regulatory system responds to demands, stress and illness [35]. Fine-grained HRV information is usually important
to quantitatively measure physiological and mental changes during treatment. For example, the frequent detection
of the premature beats indicates some kinds of heart problems about the person. Currently, reduced HRV has been
used as a marker of aging, decreased autonomic activity, diabetic neuropathy, and increased risk of sudden cardiac
death. According to the news from WHO [2], more than 17 million people die annually from cardiovascular
disease (CVD), an estimated 31% of all deaths worldwide. Efficient HRV assessment can not only provide accurate
information about the heart states for the treatment of heart diseases and the adjustment of mental status, but
also timely detect the heart problem in the early stage. Therefore, accurate and fine-grained HRV assessment is
regarded as one of the most effective methods for the general health evaluation [29].

1.2 Limitation of Prior Art
HRV analysis is normally based on the Inter-Beat Interval (IBI) measurements, which accurately describes the
time interval between the adjacent heartbeats. As a traditional approach, the electrocardiogram (ECG) is regarded
as the standard way to measure the IBI [6], which can accurately measure the IBI information from the tiny
electrical changes on the skin. But the user is usually tethered to the electrodes in a wired manner, which imposes
restrictions on the range of daily activities of the user. Moreover, it requires direct skin contact, indicating some
people need to remove the chest hair to achieve better signal quality. Some optical absorption methods leverages
the photoplethysmograph (PPG) [12, 18] to estimate the IBI information. But it usually relies on the reflection of
infrared light, leading to the loss of waveform detail and time accuracy. Commercial devices (e.g., wristbands [5])
try to integrate the sensors (electrodes or visual sensors) into fabrics for wearable applications. However, they are
only designed to estimate the average heart rate within a duration, which works as a training aid for exercises.
So the fine-grained heart problems, such as premature beats and heart arrhythmia, cannot be effectively detected,
which requires the accurate estimation of the IBI information. Moreover, these wearable devices are mostly
constrained by their limited battery life, requiring frequent battery recharging. This limits the efficient HRV
monitoring for elderly people and infants, who may forget to recharge the wearable devices. To eliminate the
dependency on such sensing devices, a number of device-free methods are proposed to perceive the heartbeat via
wireless channel (e.g., Wi-Fi and FMCW) [10, 11, 42]. However, they usually depend on the dedicated devices

RFID tag array

����

���

���

Elder monitor

Sleep monitor

(a) Illustrations of applications of RF-ECG

Tag array
Antenna

Heartbeat

Reflection
effect

Moving
effect

(b) Illustration of working flow of RF-ECG

Fig. 1. RF-ECG system scenario.
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(e.g., USRP [10] and RFID with conductive fabric electrodes [11]), and thus are expensive compared with the
commercial devices. Additionally, some professional skills are required to operate the dedicated devices, which
is not suitable for applications in a ubiquitous environment. Moreover, when multiple people are within the
sensing range, the device-free property prevents them from effectively distinguishing multiple human subjects
and performing HRV monitoring simultaneously. Therefore, a new solution based on Commercial-off-the-Shelf
(COTS) devices is desirable to the above limitations in a lightweight and distinguishable approach.

1.3 Our Approach
The emerging RFID technology [15, 25, 27, 34, 37, 38, 40] has brought new opportunities for HRV monitoring in
a more convenient and accurate approach, as the RFID tag can be regarded as an extremely lightweight sensor
and its nature of identification can be used to effectively and easily distinguish different human subjects. In this
paper, we propose RF-ECG, an RFID-based approach to perform HRV monitoring on human subjects, which aims
to recover the IBI information with a similar accuracy as the traditional ECG based on the COTS RFID devices.
Specifically, instead of designing a dedicated platform [11], we attach a set of COTS RFID tags on the chest area
in the clothes of the human subject, which forms a tag array for comprehensive sensing. We deploy a COTS
RFID reader to continuously interrogate these tags by issuing a continuous wave, and collect their backscattered
RF-signals within the effective scanning range (1 ∼ 3m). Similarly to the traditional ECG-based approaches, we
focus on the HRV monitoring with a relatively quite environment, where the users are supposed to keep still
during the measurement. Figure 1(a) illustrates the deployment of tag array of RF-ECG, where 6 tags form a 2 × 3
tag array. Through the RF-signal from the tag array, RF-ECG is able to facilitate two main applications for HRV
monitoring in daily life. Firstly, by deploying the antenna above the bed, RF-ECG is able to monitor the user’s heart
status during sleeping, which can further enable the treatment of sleep apnea [1] and sleep stage detection [21].
Such mode can be extended to infant monitoring, because infants spend most of the time sleeping in the cribs.
Secondly, since elderly people are usually less active and spend lots of time in performing more stationary
activities (e.g., watching TVs), we can deploy the antenna in the living room and bedroom for efficient HRV
monitoring. Such HRV monitoring can offer rapid and effective diagnostic clues for the general health evaluation.
Toward these monitoring applications, Figure 1(b) further presents the diagram of our HRV monitoring approach.
As the heart beats behind the human chest, the continuous wave reflected from the heart movement could be
captured by the tag array, and then backscattered to the RFID reader via the RF-signals [41], which we call
the reflection effect of the tag array. Meanwhile, the RF-signals are also affected by the chest movements due
to human respiration, which we call the moving effect of the tag array. Hence, the RF-signals received by the
RFID reader consist of heartbeat signal, respiration signal and the ambient noise from the environment. In this
paper, we investigate the possibility of extracting such tiny reflection signals corresponding to the heartbeat,
while eliminating other signal interferences from the human respiration and the ambient noise in the multi-path
environment. In particular, according to the RF-signals received from the tag array, we develop a mechanism to
capture the chest movement, aiming to cancel the respiration signal corresponding to the moving effect. Then, by
using the wavelet-based signal denoising, we further extract the heartbeat signals corresponding to the reflection
effect. Finally, we build a model to depict the reflection effect on RF-signals of different tags from the tag array,
and extract the Inter-Beat Interval (IBI) for HRV monitoring.

1.4 Challenges
There are three main challenges in performing the HRV assessment via the RFID based approach. The first
challenge is to detect and extract weak heartbeat signals from RFID tags among multiple interferences caused by
human respiration and ambient noises. In particular, the signal variation captured by the reflection effect from
heartbeat is much weaker than the signal variation caused by the moving effect from respiration. To address
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this challenge, we develop a mechanism to depict the RF-signal variation of the tag array caused by the chest
movement, helping to eliminate the part of the respiration signals corresponding to the moving effect. We further
build a model to depict the reflection effect on RF-signals of different tags from the tag array. By fusing the
RF-signals from multiple tags, we are able to strengthen the heartbeat signals while suppressing the signal
interferences from the others.

The second challenge is to achieve a fine-grained heart beat estimation for the HRV assessment according to the
reflection effect. Instead of simply calculating the heart rate, which could be estimated through the Fast Fourier
Transform results, the fine-grained HRV assessment requires to estimate the beat-to-beat interval by performing
accurate beat segmentation. To address this challenge, after eliminating the respiration signals, we apply the
wavelet-based denoising method to further filter out the ambient noise signals outside the frequency band of heart
rate. The filtered signals thus can show a clear periodic pattern to facilitate fine-grained IBI segmentation. Finally,
we propose a PCA-based scheme to derive a template to depict the inter-beat signals and use it to iteratively
perform the IBI segmentation.
The third challenge is to understand the sensing mechanism of RFID tag array and leverage the RFID tag

array to perform accurate sensing on HRV. Specifically, as multiple tags are deployed on the human body, these
tags can be regarded as a non-rigid body array to perceive the moving effect, since the tags may have relative
displacement during the process of respiration; they can also be regarded as a rigid body array to perceive the
reflection effect, after eliminating the respiration signal from the received RF-signal. To fuse multiple RF-signals
from the tag array for accurate sensing, we capture the relationship between the RF-signals from the tag array and
the corresponding movement from the heartbeat or respiration, via our reflection effect model and the moving
effect mechanism, respectively. Based on the above techniques, we are able to perform data fusion over RF-signals
from the RFID tag array for accurate sensing on HRV.

1.5 Contributions
This paper makes four contributions: First, to the best of our knowledge, this is the first work that investigates
the feasibility of Heart Rate Variability assessment based only on the COTS RFID. We leverage the RFID tag array
to perform accurate sensing on HRV assessment in a lightweight and distinguishable approach. Second, we have
conducted in-depth investigation on the sensing mechanism of RFID tag array. We develop a reflection effect
model and a moving effect mechanism, respectively, to capture the relationship between the RF-signals from the
tag array and the corresponding movement from the heart beat or respiration. Third, we design novel algorithms
to extract the HRV from the RF-signals mixed with heartbeat signals, respiration signals, and ambient noises. We
use wavelet-based signal denoising and signal fusion from tag array to remove the interferences to extract the
IBI from the heartbeat signals. Fourth, we implement a system prototype for HRV assessment in the practical
environment, and evaluate the performance with extensive experiments. Experiment results show that RF-ECG
can achieve a median IBI error of 24ms , i.e., about 3% error of a normal IBI value, which is compatible to existing
wired techniques.

2 RELATED WORK
Sensor-based heartbeat detection: Photoplethysmogram (PPG) sensors are widely used for heart rate estima-
tion by using a pulse oximeter, which illuminates the skin and measures the changes in light absorption [8].
Current wearable devices (e.g., smartwatches and fitness trackers [3–5]) usually use the PPG-based technology to
measure the heart rate. However, body motion can easily distort the waveform of PPG, which causes large noise
for heart rate sensing. To address this issue, recent research employs the inertial measurement units (IMU) to
improve the overall accuracy of PPG [12, 18]. Besides PPG, Zou et al. develop a heart rate monitoring system
using nanofiber-based strain sensors, which could be more compliant and comfortable [43]. However, these
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Fig. 2. Empirical study setup.

dedicated sensors are fairly expensive and battery-hungry, so it is not suitable for large-scale usage and long-term
deployment. HB-phone [22] estimates the human heart rate based on the vibration sensors mounted on the
bed, which provides the heartbeat monitoring during sleeping. However, it only provides the average heart
rate during a time window without the fine-grained IBI information. Recently, researchers try to measure the
heart rate by using the smartphone cameras [19, 24, 31], which require the user to place her fingertip on the
camera. Such vision-based approaches heavily rely on the user’s pose as well as the illumination condition;
moreover, as the signals are collected from the weak pulse, the accuracy is relatively lower than the approaches
of obtaining the signals directly from the heartbeat. In contrast, our solution measures the heartbeat using the
signal reflected from the heart, which could be more accurate than the pulse-based measurement. In addition, our
solution leverages the battery-free RFID tags for heartbeat detection, which is more lightweight, scalable and not
limited by the battery life.
RF-based heartbeat detection: Recent research has shown that RF-signals are sensitive to the changes of

the multi-path environments [9, 14, 23, 39, 41], thus both the heartbeat and breathing can be detected according
to the variation of the RF-signals without requiring the user to hold or wear any device. Radar-based approaches,
such as FMCW [10, 42], doppler radar [17, 29], are accurate at measuring such tiny environmental changes.
However, they usually require dedicated hardware and incur high cost for daily heartbeat monitoring. Nguyen et
al. [30] try to estimate the respiration rate and heart rate based on a radio transceiver and a radar navigator. But
it requires specific motion devices for navigation, and it only provides the coarse-grained heart rate estimation.
Wi-Fi based approaches focus on estimating the vital signs using commercial off-the-shelf (COTS) Wi-Fi devices.
Specifically, they mainly leverage the Channel State Information (CSI) from both the time and frequency domain
to estimate the breathing rate and heart rate [26, 28, 36]. However, both the radar and Wi-Fi based techniques
cannot label the subject, due to their device free characteristic. Therefore, it is difficult to distinguish and monitor
multiple users simultaneously, especially when users share similar breathing or heartbeat patterns. To address
this problem, Adib et al. proposed a radar technique to monitor the vital signs of multiple people simultaneously,
by separating reflectors into different buckets depending on the distance between these people and the device
[10]. Hence, it requires the human subjects to be separated with a considerable distance for efficient distinction.
In contrast to the previous work, in this paper, we propose a novel approach for heartbeat sensing via RFID tag
array, which can be regarded as an extremely lightweight sensor. Moreover, its nature of identification can be
used to effectively distinguish multiple human subjects, even if these human subjects are very close to each other.

3 UNDERSTANDING HEART RATE VARIABILITY

3.1 Measurement of Periodic Signal via RFID Tag Array
In order to systematically study how to use an RFID tag array to passively sense a periodic signal, e.g., the
heartbeat signal, we first use a controlled experiment to investigate the reflection influence of the periodic signal
on the tag array, which is reflected from a signal source without attaching an RFID tag. Specifically, we manually
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Fig. 3. Preliminary study: Measurement of periodic signal on the RFID tag array.

generate a periodic signal source by swinging a water bag as a plummet and sense the period of the water bag
from a pre-deployed tag array. As shown in Figure 2, we hang a water bag to emulate the periodic signal and
investigate the signal changes as we swing the water bag. A 2 × 3 tag array is deployed on the surface of a box,
which is 10cm away from the water bag, to sense the periodic signal of the water bag. The size of the tag array
is designed based on the size of human chest, so that the same tag array can be deployed on the chest area in
the clothes of the human subject. An RFID antenna is deployed 2m away from the tag array to continuously
interrogate the tags on the array.

We observe that both the phase and RSSI waves have clear periodic patterns during the swing process of the water
bag, but the periodic shapes are different from each tag. In particular, we swing the water bag as a pendulum to
generate the periodic signal. The length of the pendulum is 25cm so that the period is about 1Hz in our setup.
We show both the RSSI and phase trend of the selected tags from the tag array, respectively, in Figure 3(a) and
Figure 3(b). We can clearly observe the periodical pattern in the waves of RSSI and phase trend during the swing
process of water bag. The reason is that, the swing periodically changes the position of the reflection surface,
thus the propagation paths (i.e., multi-path effect) of the RF-signal are changed as well, which further leads to
the periodical variation in the RF-signals. In regard to the difference of the absolute RSSI value, it is caused by
the different positions of each tag. Moreover, even if all the tags present the same cycle time, the exact shape of
their waveforms are different among the tags. This indicates that different tags on the tag array have different
sensitivities to the reflection effect of the swing bag. We will build a theoretical model to explain the phenomenon
later in Section 3.3.

3.2 Measurement of HRV in Real Settings
We further investigate how the actual heartbeat affects the RF-signals in real settings. Specifically, we attach a
2 × 3 tag array on the chest area in the clothes of the human subject. We first let the human subject hold the
breath for 20s, indicating that the chest movement of breathing can be negligible. We then let the human subject
breathe normally for 20s, and thus there exists obvious chest movement of breathing. We respectively collect
the phase/RSSI values of these two sets. We select an arbitrary tag from the tag array and present the results in
Figure 4.
According to Figure 4(a), we can observe weak but fairly clear periodic heartbeat patterns from the phase

sequences, since the chest movement of breathing can be negligible. According to Figure 4(b), we can observe
obvious periodic respiration patterns for the chest movement of breathing, as the moving effect due to the chest
movement clearly changes the phase values. However, the periodic heartbeat patterns can hardly be detected
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Fig. 4. Preliminary study: measurement of HRV with and without breathing.

anymore, since the reflection effect is orders of magnitude smaller than the moving effect in the tag array. Besides,
we cannot detect any periodic patterns from the RSSI sequences in both situations, since the resolution of RSSI
is rather coarse-grained. We further perform FFT analysis on the phase sequences from the frequency domain.
Figure 4(c) shows the experiment results in both situations. For the situation without breathing, we can clearly
find a small peak at 1.355Hz, which is corresponding to the heartbeat frequency band. This asserts the reflection
effect exists but relatively small. For the situation with breathing, we can clearly detect a peak at 0.2Hz, which
corresponds to the respiration frequency band, besides, we can only detect a very small peak at 1.3Hz, which is
almost buried in the noises. Therefore, to obtain the precise heartbeat signal, it is essential to first remove the
influence of respiration and then strengthen the heartbeat reflection.

3.3 Modeling HRV via Tag Array Sensing
In this subsection, we model the relationship between the RF-signals from the tag array and the heart displacement
in the reflection effect, which is the periodic signal of the heartbeat.

3.3.1 Extracting the Reflection Signal. To understand how the heart displacement affects the reflection effect, it
is essential to extract the reflection signal from the received RF-signal, i.e., the RF-signal reflected from the heart
to the tags. Hence, we use a signal propagation model to depict the RF-signal transmission with the reflection
effect. As shown in Figure 5, we use A, T , B and C to denote the RFID antenna, RFID tag, reflection object and
background environment, respectively. First, the antenna A sends the continuous wave to activate the tags. Due
to the multi-path effect, the tag T receives a superposed signal, which contains the line-of-sight (LOS) signal
SA→T (blue line), the reflection signal SA→B→T from the reflection object B (red line), as well as the reflection
signal SA→C→T from the background environment (green line). Then, after the specified tag is successfully
activated, it backscatters the signal to the antenna with necessary data modulation. Hence, the raw signal received
by the antenna A can be represented as:

Sr = hT→AhT(SA→T + SA→B→T + SA→C→T), (1)
where hT→A represents the signal attenuation due to propagation path loss and hT is the reflection coefficient of
the tag. Since both the LOS signal and the reflection signal from the background environment are usually stable
during the whole propagation, we combine them as

Sr,0 = hT→AhT(SA→T + SA→C→T), (2)
and denote the remained reflection signal from the reflection object as

Sr,1 = hT→AhTSA→B→T . (3)
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To extract the reflection signal Sr,1 from the superposed signal Sr , we could subtract the complex signal Sr,0 [41],
which can be measured simply by removing the reflection object.

Figure 6 shows the RSSI and phase variation of the reflection signals from periodic signal of the water bag
according to the subtraction Sr,1 = Sr −Sr,0. We note that, for each reflection signal, the RSSI variation is irregular
and its value is usually less than −60dBm, as the power of the reflection signal is rather weak and easy to be
affected. In fact, since the reflection object, i.e., the water bag, only moves a small distance, theoretically the
RSSI variation should be very small according to Friis Equation [16]. Meanwhile, the phases of the reflection
signal from different tags all have obvious periodical patterns in the waveforms. Moreover, they not only have
some similarities in the waveform contours, but also have differences in the waveform details among each other.
Therefore, this implies that all the tags are subjected to similar reflection influence, but the performance in
sensitivity are different among different tags.

3.3.2 Estimating Heart Displacement via a Single Tag. After extracting the reflection signal, it is essential to
further figure out the relationship between the heart displacement and the reflection RF-signal. Since the phase of
reflection signal is more sensitive to the heart displacement than RSSI, we use the phase as a metric for RF-signal
to depict the corresponding relationship. According to Eq.(3), let λ be the wave length of RF-signal, the phase of
reflection signal Sr,1 can be calculated from the reflection path length as:

θ r
T
= 2π (dT→A + dA→B + dB→T

λ
+ θcons ) mod 2π , (4)

where the superscript r indicates the reflection signal and θcons is the constant phase deviation due to reflection.
Since dT→A is fixed during the whole propagation and θcons is constant, when the reflection object moves from
B to B ′, the phase change ∆θ r

T
only depends on the change of path length ∆dA→B and ∆dB→T , as:

∆θ r
T
= 2π ∆dA→B + ∆dB→T

λ
mod 2π . (5)

Without loss of generality, we first consider the path length change ∆dB→T . Assume that the points D and
D ′ are respectively the projection of the points B and B ′ on the horizontal line of T in Figure 5, then the edge
length dBD = dB′D′ . When the reflection object moves from B to B ′, the reflection path changes from dB→T to
dB′→T , which are, respectively, the hypotenuses of two right triangles △BDT and △B ′D ′T . Let ϕT and ϕ ′

T
to

denote the angle ∠BTD and ∠B ′TD ′, respectively. Then, the path length change ∆dB→T can be calculated as
follows:

∆dB→T = dB′T − dBT =
dBD

sinϕ ′
T

−
dBD

sinϕT

. (6)
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Fig. 6. The extracted reflection signal.

Let ∆h be the displacement of the reflection object (i.e., the heart displacement dB′B), it is essentially equal to

∆h = dB′B = dD′D =
dBD

tanϕ ′
T

−
dBD

tanϕT

. (7)

By combining the two equations to remove dBD , we obtain

∆dB→T = ∆h
sinϕT − sinϕ ′

T

sin(ϕT − ϕ ′
T
)
. (8)

If we define the angle deviation ∆ϕT = ϕT − ϕ ′
T
, then ϕ ′

T
= ϕT − ∆ϕT , thus

∆dB→T = ∆h(cosϕT + sinϕT

1 − cos∆ϕT

sin∆ϕT

). (9)

In regard to the heartbeat, the reflection object (i.e., the heart) actually moves a rather small distance ∆h, thus the
angle deviation ∆ϕT → 0. Hence, 1−cos∆ϕT

sin∆ϕT
= tan ∆ϕT

2 → 0. Therefore, Eq (9) can be simplified as follows:

∆dB→T ≈ ∆h cosϕT . (10)

Similarly, for the path length change ∆dA→B , let ϕA denote the angle between AB and the horizontal line, we
also obtain ∆dA→B ≈ ∆h cosϕA .

Therefore, by combining Eq. (10) and Eq. (5), we obtain

∆θ r
T
≈

2π∆h(cosϕT + cosϕA)

λ
mod 2π . (11)

Hence, for any arbitrary tag T , given the phase change of the reflection signal ∆θ r
T
, the heart displacement ∆h

can be estimated as follows:

∆h ≈
(∆θ r

T
+ 2πk)λ

2π (cosϕT + cosϕA)
, where k = · · · ,−1, 0, 1, · · · (12)

Here, k represents the periods of the phase values. Since the heart displacement is rather small, k equals to 0 in
our problem.
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Fig. 7. Heart displacement estimation via tag array.

3.3.3 Estimating Heart Displacement via Tag Array. In Section 3.3.2, we derive the relationship between the
heart displacement and the reflection signal from a single tag, according to the model in Eq.(12). However, due to
the issues such as the multi-path effect and the ambient noises, the reflection signal from a single tag can be
distorted if it is deployed in a position with interferences and noises, which further leads to the errors in the
heart displacement estimation. Therefore, it is essential to further investigate the reflection signals of multiple
tags from different positions of the tag array to improve the sensing performance.

Suppose we build a 3-dimensional coordinate system by setting the center of the tag array as the origin O , the
X and Y -axis are parallel to the tag array, whereas the Z -axis is orthogonal to the tag array. Then, each tag Ti
from the tag array can be denoted as a point with the coordinate (xi ,yi , 0). Assume that the reflection object (e.g.,
the heart) can be regarded as a virtual point B according to the overall reflection effect, thus it can be denoted
with the coordinate (xB ,yB , zB ). Besides, the antenna A can be denoted with the coordinate (xA,yA, zA). Then,
as shown in Figure 7(a), for an arbitrary tag Ti from the tag array, the parameters cosϕi (i.e., cosϕT for tag Ti )
and cosϕA from the model in Eq.(12) can be depicted as follows:

cosϕi = |zB |√
(xB−xi )2+(yB−yi )2+z2B

cosϕA =
|zB−zA |√

(xB−xA)2+(yB−yA)2+(zB−zA)2

(13)

According to the model of phase change in Eq.(11), in regard to different tags from the tag array, the parameter
ϕA is only related to the reflection object, so it should be consistent for all tags; the parameter ϕi actually depends
on the exact position of the tag Ti , so it should be different for different tags. According to Eq.(11), the smaller
the value of ϕi is, the larger phase change of the tag Ti is obtained. This implies that the reflection object causes
larger signal influences to the tags which is more close in position. Based on this property, it is possible to further
locate the position of the reflection object (i.e., the heart), according to the signal variances from the tag array.
We further validate this hypothesis with an empirical study. The experiment setup is the same as Section

3.1. We deploy a 2 × 3 tag array to detect the reflection of the swinging water bag, and label each tag as (x ,y)
according to its order in the specified dimension. The center of the water bag is located around the coordinate
(2.5, 1.5). We show the reflection phase range of all the 6 tags in Figure 7(b). It is found that the tag at (2, 1) has
the largest reflection phase range, whereas the other tags gradually decreases, as they are away from the tag at
(2, 1). Moreover, based on the amplitude of the reflection phase, we can infer the position of the water bag around
(2, 1) and (3, 1), which is consistent to the groundtruth and the model in Eq.(11). In addition to the position of
water bag, we also estimate the displacement of the water bag based on the reflection phase matrix. In Figure 7(b),
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the maximum reflection phase range is 8.4 radian of the tag at (2, 1), which represents the displacement of about
22cm. The estimated displacement is very close to the groundtruth, which is 20cm according to the deployment.
Therefore, the experiment results validate the effectiveness of our reflection model of the tag array.

4 RF-ECG SYSTEM DESIGN

4.1 System Overview
The system architecture of RF-ECG is shown in Figure 8. To perform the HRV assessment, a set of COTS RFID
tags are attached in the chest area on the clothes of the human subject, which forms a tag array for comprehensive
sensing. A COTS RFID reader is deployed to continuously interrogate these tags by issuing a continuous wave,
and collect their backscattered RF-signals within the effective scanning range (1 ∼ 3m). According to the received
RF-signals from the tag array, we leverage three main components in RF-ECG to extract the HRV information,
i.e., Signal Preprocessing,Moving Effect Elimination and IBI Extraction. Signal Preprocessing first filters the received
RF-signals from the tag array with smoothing and interpolation, and then detects the activities of human body
to segment the signals for the following HRV estimation. Moving Effect Elimination removes the respiration
influence by estimating the contour of chest movement and cancels the phase variation caused by the moving
effect. IBI Extraction further extracts the Inter-Beat Interval (IBI) from the reflection signal captured by the tag
array. Specifically, we first use Discrete Wavelet Transform (DWT) to further reduce the ambient noises by
concentrating on the heartbeat frequency band. We then fuse the RF-signals from the 2-dimensional tag array
into a signal sequence to generate a clear periodic pattern. We further coarsely segment the fused signal and
use the Principal Component Analysis (PCA) to obtain a template to depict the principle features of a heartbeat
period. Finally, we estimate a fine-grained IBI segmentation by maximizing the similarity between the signal
segments and the template based on dynamic programming. The extracted IBI can be further used for HRV
assessment.

4.2 Signal Preprocessing
According to the empirical study in Section 3.2, for the RF-signals from the tag array, the heartbeat signal is
almost buried by the respiration signal and the ambient noise. Hence, after we obtain the RF-signals from the tag
array, it is essential to smooth the collected signal for further extraction of the heartbeat signal. According to [40],
the phase noises of RF-signals follow the Gaussian distribution. Therefore, we use Kalman filter [20] to process
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Fig. 9. Calculating KL divergence from the phase sequence.

the raw phase sequence of the RF-signals, which reduces the ambient noises but keeps the signals caused by the
respiration and heartbeat.
Moreover, in COTS RFID system, the EPC Gen2 standard [32] adopts a framed slotted Aloha protocol to

interrogate the tags in a random manner, which makes the uniform sampling over the tags impossible. To tackle
this issue, assuming that the phase sequences change continuously, we use a cube spline interpolation method [13]
to resample the phase sequence with uniform sampling rate. In particular, we resample the phase sequence with
the sampling interval of 4 ms.

Next, we demonstrate to segment the signal sequence for IBI estimation according to the activeness of the user.
Since RF-ECG is designed to estimate the IBI in a relative stationary environment, we need to firstly remove the
signal sequence with apparent fluctuations due to the larger activities, and then focus on the other stable signal
for the IBI estimation. Toward this end, we design an adaptive scheme to calculate the activeness of the user
based on the KL divergence [15]. For the signal sequence, we use a sliding window to divide the sequence, and
calculate the discrete probability distribution function (PDF) of the signal within the window. Then given the
PDF of two consecutive windows P and Q , the KL divergence is defined as:

DKL =
∑
i

P(i) · ln P(i)

Q(i)
, (14)

where P(i) and Q(i) is the probability value of index i .
The KL divergencemeasures the information losswhen the distributionQ is used to approximate the distribution

P . Thus, a large value of the KL divergence indicates a large activity of the user, which leads to large difference
between distribution P andQ . Figure 9 presents two KL divergence sequences calculated from two phase sequences:
the signal of tag 1 contains an activity of page turning and the signal of tag 2 contains only small activities such
as breathing. Based on the KL divergence, we can clearly detect the activity of page turning, which have larger
KL divergence value compared with the empirical threshold.
For the detected activities based on the KL divergence, we can classify them based on the activity duration

into two kinds, i.e., long activity (> 2s) and short activity (≤ 2s). For the long activity, we just skip the sequence,
because these activities are related to the movement of the whole human body, and thus the signal sequence
is too noisy for the fine-grained IBI estimation. In regard to the short activity, it is usually caused by the small
actions, e.g., page turning, scratching or shrugging. Since the human body almost stays at the same position, we
can remove the sudden phase change due to the small actions and still leverage the scheme in Section 4.5 for the
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IBI estimation. As the small action has low frequency compared with the heart rate, we use a Butterworth filter
to remove the sudden phase change.

4.3 Moving Effect Elimination
After signal preprocessing, we obtain a sequence of RF-signals mixed with the respiration signal and the heartbeat
signal. Then, it is essential to extract the heartbeat signal from the reflection effect by removing respiration signal
from the moving effect. Here, the moving effect means that the RF-signal changes along with the chest movement
due to respiration, whereas the reflection effect means that the RF-signal changes due to the reflection from the
heartbeat movement. According to the empirical study in Section 3.2, the respiration brings much larger influence
to the received RF-signals than the heartbeat. Therefore, to estimate the respiration signal from the raw phase
changes of the RF-signal, we can roughly neglect the phase changes due to the reflection effect and regard the
phase changes are mainly caused by the moving effect.
In this paper, we propose a tag array-based mechanism to estimate and eliminate the respiration signal.

Specifically, we first estimate the contour of chest movement through a physical model between the tag array
and chest. Then, we calculate the phase change of each tag corresponding to the chest movement for signal
elimination. As shown in Figure 10, the respiration process can be modeled as the back-forth displacements of
the chest. We set the chest contour at time t0 as the reference contour. During the process of chest displacement,
for an arbitrary time t , we use ∆l(t) to denote the largest displacement of the chest contour, which is usually
corresponding to the displacement of the chest’s midpoint; we also use ∆li (t) to denote the displacement of each
tag Ti from the tag array. Assume the displacement of the chest contour follows a linear relationship, then, the
displacement ∆li (t) of each tag Ti has a fixed scale factor ζi = ∆li (t )

∆l (t ) with respect to the displacement ∆l(t) for
any time t . The value of ζi depends on the relative position of the tag Ti on the chest.

Suppose the incident angle of the signals from the antenna, i.e., the angle between the transmission direction
of the antenna and the horizontal plane, is α . Since the antenna is deployed fairly far away from the human
subject (e.g., 1 ∼ 3m), whereas the distance between each tag is very close (e.g., 2 ∼ 3cm), the incident angle α of
the antenna can be regarded as uniform for different tags. Then, the phase variation of tagTi can be derived from
∆li as follows:

∆θi =
2π∆li cosα

λ/2 mod 2π , (15)

where λ is the wave length. Since the chest displacement is usually smaller than half of the wavelength (i.e.,
16.2cm), we neglect the modulo operation in following derivation.
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Hence, suppose there are n tags on the tag array, if we can obtain the scale factor ζi for different tags, the
largest displacement of chest contour ∆l can be estimated as follows:

∆̂l =
1
n

n∑
i

∆li
ζi
=

λ

4nπ cosα

n∑
i

∆θi
ζi
. (16)

Once we have the displacement ∆̂l , we can derive the phase change of each tag Ti during the respiration process
as follows:

∆̂θi =
4π ∆̂li cosα

λ
=

4π ∆̂lζi cosα
λ

=
ζi
n

n∑
i

∆θi
ζi
. (17)

Then, we can subtract the estimated phase sequence ∆̂θi from the filtered phase sequence, so as to remove the
interference from the respiration signal.
Based on the above analysis, it is critical to estimate the parameter ζi for different tags, we thus depict the

solution as follows: Suppose for each tag Ti , the interpolated phase sequence from a specified time windowW is
Θi = {θi (t)}. For any time t ∈W , we can add the phase of different tags together as θs (t) =

∑n
i=1 θi (t), and obtain

the phase sequence Θs = {θs (t)}. In this way, we are able to obtain the principal phase variation trend of all tags.
According to the time points of each adjacent peak and valley in Θs , say tj and tj+1, which is corresponding to
the largest displacement of the chest contour ∆l(t), we can calculate the corresponding phase change in Θi for
any tag Ti , and obtain the averaged phase change fromm samples as follows:

βi =
1
m

m∑
j=1

|θi (tj+1) − θi (tj )|. (18)

As the displacement ∆l(t) is uniform for all tags, hence the value of βi is proportional to the value of ζi , i.e.,
ζi = βi ·C , C is a constant. According to Eq.(17), we can replace ζi with βi and compute the value of ∆̂θi .

Figure 11 shows an example of eliminating the moving effect of respiration from the mixed RF-signals. In
the signal with respiration, we use the red circle to mark the signal change due to the moving effect, which
periodically arises based on the respiration pattern. Note that after the elimination, the periodic peaks and valleys
caused by the respiration are almost removed. We can observe some periodicity for the remaining signals, which
is corresponding to the heartbeat.
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4.4 DWT-based Denoising
After eliminating the respiration signal caused by the moving effect, there still exist some noises in the remaining
signals, as the approximated respiration signal derived from the moving effect cannot completely be consistent
with the actual respiration signal. Hence, we use the Discrete Wavelet Transform (DWT)-based denoising method
to further remove the noises from the remaining signals. Compared with other filtering techniques, the Discrete
Wavelet Transform can analyze the signal in both time and frequency domain without making any assumption
about the nature of the signal. It decomposes the signals into the approximation coefficients and the detailed
coefficients. The approximation coefficients denote the low frequency signals, which correspond to the residual
components of the respiration signals. The detailed coefficients denote the signal details of the heartbeat as well as
the high frequency noises. As the heartbeat usually falls in the frequency range of 1 ∼ 2Hz, we are able to further
remove the residual noises by filtering out both the approximation coefficients and the detailed coefficients in
higher frequency band.
In particular, the DWT method includes three steps. 1) Decomposition: We first run the DWT-based signal

decomposition recursively by 9 levels with Symlet wavelet filter [33]. The DWT generates the approximation
coefficients yapp and a sequence of detailed coefficients y1det ,y

2
det , · · · ,y

9
det , where y

1
det has higher frequency

than y9det . 2) Filtering: We apply the filtering method to extract the components corresponding to the heartbeat
frequency band. In particular, we remove the approximation coefficients yapp which is related to the large
displacement from chest movement. Meanwhile, we keep the detailed coefficients y5det , · · · ,y

8
det unchanged,

which correspond to the frequency about the heart beat (ranging from 0.7Hz to 5.6Hz). In regard to the other
components, since they are mainly related to the noisy signal, we reduce them to 20% according to our empirical
study, which can remove most noise and keep the sufficient details about heart beat. 3) Reconstruction: By
combining all the remaining coefficients (i.e., the detailed coefficients after filtering), we reconstruct the final
phase trends with the inverse DWT as follows: {θ̂ ′i (1), · · · , θ̂ ′

i (t)}. The reconstructed measurements enable us
to remove the noise components while keeping the heartbeat related phase signal. In Figure 12, we show an
example to illustrate the DWT denoising flow. Note that after DWT, the original decreasing trend of the signals is
removed, while the detailed heartbeat influence remains. Therefore, DWT facilitates accurate inter-beat interval
estimation, when the respiration signal is not fully removed.

4.5 Signal Fusion from RFID Tag Array
After denoising the signals based on DWT, we can observe fairly clear periodic pattern caused by the heartbeat
from these signals. According to the model in Section 3.3, the current signals Sr still contain two components, i.e.,
Sr,0, which is the mixture of LOS signal and reflection signal from the static background environment, and Sr,1,
which is the reflection signal from the heartbeat movement. Since it is difficult to measure the signal Sr,0 like
Section 3.3 by simply removing the heartbeat, we can select a sufficiently large time interval, and use the averaged
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Fig. 13. Signal fusion result vs the ECG ground truth.

signals of Sr to estimate Sr,0. As the reflection signal Sr,1 from the heartbeat varies periodically, during the process
of averaging, the variable component Sr,1 mutually offsets each other, and finally the constant component Sr,0 is
estimated.

So far, the reflection signal Sr,1 from the heartbeat could be obtained. However, the signals from any single tag
usually cannot precisely depict the state change of the heartbeat, due to the following reasons. 1) Tag misreading:
Due to the issues such as the energy absorption, some tags may fail to capture the reflection signals of heartbeats
frequently due to tag misreading. 2) Different sensitivities: As the tags are deployed in different positions of the
tag array, their sensitivities to the reflection effect are different according to our empirical study. To address the
above issues, we further fuse multiple signals of different tags from the tag array to estimate the state change of
heartbeat. Specifically, we first estimate the position of the heart according to the reflection model in Section
3.3, and then use the method of Minimal Mean Square Error (MMSE) to estimate the heartbeat displacement by
fusing the signals from the tag array.
We first estimate the heart position according to the reflection signals from the tag array. For a selected time

intervalW , we can continuously capture the phase change ∆θ ri (t) of each tag Ti . Then, we can compute the
average phase change as ∆θ ri within the time intervalW . According to Eq (11), the average phase change ∆θ ri is
corresponding to an average heart displacement ∆h, i.e.,

∆θ ri (∆h) ≈
2π∆h(cosϕi + cosϕA)

λ
mod 2π , (19)

where the modulo operation can be neglected due to the small displacement of the heartbeat. Therefore, after
measuring and averaging the phase changes of reflection signal, we can obtain ∆θ r∗i . In comparison to the
theoretical value ∆θ ri (∆h), we use the MMSE to estimate the heart position (xB ,yB , zB ) as follows:

argmin
xB,yB,zB,∆h

n∑
i=1

(∆θ ri (xB ,yB , zB ,∆h) − ∆θ r∗i )2. (20)

As the relative position of the antenna A cannot be obtained in advance, the value of cosϕA is unknown.
Nevertheless, since it is a constant value for all tags, we can cancel cosϕA from the object function by subtracting
the phase of a specified tag (e.g., tag T1) :

argmin
xB,yB,zB,∆h

n∑
i=1

((∆θ ri − ∆θ r1 ) − (∆θ r∗i − ∆θ r∗1 ))2. (21)

A straightforward solution is to enumerate all the possible combinations of xB ,yB , zB , and ∆h, which is rather
time consuming. In fact, according to some priori knowledges, we are able to greatly reduce the infeasible
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Fig. 14. An example of IBI Segmentation

solutions to reduce the compute complexity. For example, the empirical study in Section 3.3.3 shows that the tag
close to the heartbeat usually have relatively large phase changes. Hence, xB and yB can be reduced to a small
range based on the actual phase distribution. Similarly, zB and ∆h can be reduced to a small range based on the
physical structures of human body.
After figuring out the position of heartbeat, we further estimate the heart displacement ∆h(t) at time t .

Specifically, according to Eq (11), as the modulo operation can be neglected, the theoretical phase change of each
tag Ti at time t is

∆θ ri (∆h(t)) =
2π∆h(t)(cosϕi + cosϕA)

λ
. (22)

Hence, after measuring the phase changes ∆θ r∗i (t) for each tag Ti at time t , let γi (t) = (∆θ ri (t) − ∆θ r1 (t)), and
γ ∗
i (t) = (∆θ r∗i (t) − ∆θ r∗1 (t)), then we utilize MMSE to estimate ∆h(t) as follows:

∆h(t) = arg min
∆h(t )

n∑
i=1

(γi (t) − γ ∗
i (t))

2. (23)

Figure 13 plots an example signal wave of the heartbeat movement ∆h(t). For the better comparison, we
respectively plot the ground truth of ECG signal and the fusion signals of ∆h(t). It is found that the periodic
pattern can be clearly observed from the fusion signals. However, we also observe some noisy peaks among the
waveforms, which is due to the weak reflection of the heartbeats.. Therefore, we further compute the integral of
the fusion signals to obtain the integral signals which are more smooth. Note that the mean value of the fusion
signals is moved to 0 after eliminating the moving effect, so the integral process does not incur obvious error
accumulations. After the integral smoothing, most noisy peaks are removed in the integral signals, such as to
clearly obtain the profiles of the phase sequence.

4.6 Inter-Beat Interval Segmentation
At last, we estimate the Inter-Beat Interval (IBI) based on the fusion signal. Similar to [42], we leverage a dynamic
programming-based approach to estimate each IBI. The intuition is that, even if the heartbeat may have different
inter-beat intervals, the overall shape of each heartbeat should be quite similar. Hence, our solution is to find
the segmentation that maximizes the correlations between each segment. Different from [42], which takes a
long time to iteratively search for the optimal segmentation and template, we design a PCA-based algorithm to
learn the template for further segmentation. In particular, we first coarsely segment the integral sequence by
detecting the peaks, since we can clearly observe the periodic wave from the integral signal in Figure 13. Then,
we re-sample each segment to the same length for template study. Finally, we can learn the template from all the
segments with the same length, which is further used for fine-grained segmentation.

Figure 14 shows an example of IBI Segmentation, we first segment the integral signals by detecting the peaks
as a coarse-grained segmentation. Here, small peaks are removed as false segmentations. We further apply the
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coarse-grained segmentation on the fusion signals. Then we re-sample each segment to the same length and use
PCA to learn the principle shape from all these segments to obtain a template Tf . Since each segment indicates
one heartbeat, the principle shape of these segments can well depict the feature of one heartbeat in a statistical
manner. Based on this template, we further leverage Dynamic programming for fine-grained segmentation.
Suppose Sf = {sf (1), sf (2), · · · } is the segmentation on the fusion signal, our solution aims to maximize the
correlations between each segment and the template as follows:

Sf = argmax
Sf

∑
s∈Sf

corr (ω(s, |Tf |),Tf ), (24)

where ω(s, |Tf |) resamples s to the same length of the template Tf and corr () calculates the correlations between
the segment and the template. As shown in Figure 14, it is found that the segmentation result is very close to the
ground truth of ECG with the error in several milliseconds. The fusion segments lag behind the ECG ground
truth because the heartbeat movement usually lags behind the electronic signal.

In regard to the complexity of the algorithm, since we leverage dynamic programming to solve the problem, the
time complexity is O(n), where n represents the signal length. In comparison, the state-of-the-art algorithm [42]
alternatively update the segmentation and template, which leads toO(kn) time complexity. Here, k is the number
of iteration, which is on average 8 during the execution. Therefore, our method can save a lot of time from the
iteration.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup & Methodology
Implementation.We implemented RF-ECG based on COTS RFID devices: ImpinJ Speedway modeled R420 RFID
reader, Laird S9028PCL directional antenna, Impinj ER-62 and Impinj E41-B tags. As shown in Figure 15, we
deployed a tag array on the chest area in the clothes of the human subject for heartbeat sensing, whose topology
was used as input of our algorithm. During the experiments, the reader continuously interrogated the tags in
front of the user to collects RF-signals for IBI estimation.
Setup. In our experiments, we let 15 volunteers (12males and 3 females, aging from 21 to 55) measure the heartbeat
through RF-ECG in front of the antenna with different setups and user conditions. During the experiments, the
antenna was placed with the same hight of the chest, when he/she sits/stands in front of the antenna. As shown in
Figure 15, we had four main parameters in our experiments setup: 1) distance: we changed the distance between
antenna and user from 1m to 2.5m; 2) direction: we changed the facing direction of user from −30◦ to 30◦; 3)
displacement: we changed the displacement of the user related to the beam of the antenna from −60cm to 60cm;
4) tag array size: we changed the tag array size from 4 tags to 9 tags. To compare with the traditional device-free
methods, we also changed the number of users monitored by RF-ECG, and used RFID tags to distinguish them
for the IBI estimation of each user. Meanwhile, six different conditions of the volunteers were considered: hold
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Fig. 16. Evaluate the accuracy of IBI with different parameters.

breath, sit, stand, sleep, recline and after exercise to evaluate the robustness of our system, which indicate the
possible user conditions in real monitoring environment. Besides, five small activities were also considered:
talking, snoring, typing, drinking and page turning to evaluate the performance of RF-ECG, which indicates the
possible daily activities. In each case, we collected the measurement from RF-ECG for 30 seconds and we repeated
the experiment with the given set of parameters for 10 times, which contains about 12,000 heartbeats for each
parameter set. The default setup was the volunteer attached with 6 tags sits 1.5m away from the antenna with 0◦
direction and 0cm displacement.
Metrics. We use the IBI error, which calculates the time difference between the measured IBI time and the
groundtruth of ECG to evaluate RF-ECG. We collect the groundtruth from the Heal Force PC-80A ECG Monitor
as shown in Figure 15.

5.2 IBI Estimation with Different Setups
Experimental results show that RF-ECG achieves a median error of 24ms compared with the ECG groundtruth.We
first present the CDF figure of the IBI error in Figure 16(a). The median error based on our experiments is 24ms ,
which is only 3% error with respect to the average IBI duration. The jump of CDF is caused by the interpolation
resolution in our system. According to the results, more than 80% of our measurements have an IBI error within
50ms , which indicates an IBI accuracy of about 93%. Therefore, RF-ECG can achieve good accuracy in estimating
the IBI with different setups. We further compare the distribution of the measured IBIs using RF-ECG and the
ECG groundtruth as shown in Figure 16(b). We could see the distributions are quite similar to each other, which
indicates the accuracy of our estimation. Both the distribution peaks are around 740ms , which is the common IBI
value in daily life.
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Fig. 17. IBI accuracy across different users and multiple users.

Experimental results show that RF-ECG achieves an average IBI error of 30.4ms for all experiments, while the
IBI error increases as the distance increases.We next change four main parameters in the experiment setup, i.e.,
distance, direction, displacement and the size of tag array to evaluate the robustness of RF-ECG. Figure 16(c)∼16(f)
show the corresponding average IBI errors when we vary the four parameters. As the volunteer moves away from
the antenna, the average IBI error increases gradually in Figure 16(c), because the RF-signal fades quickly with the
increment of transmitting distance. However, we can still achieve a small average IBI error of 28ms at 2m, which
provides a large coverage region for heartbeat monitoring. In addition, the IBI errors do not vary obviously along
with the directions in Figure 16(d). The average IBI errors are all below 30ms , which indicates the robustness of
RF-ECG. Moreover, we can observe the error slightly decreases for directions of 15◦ and 30◦. The reason is when
the volunteer rotates to the right side, the heart becomes closer to the antenna, which increases the reflection
influence of the heart. Figure 16(e) also shows similar trends in displacement. As the volunteer moves to the right
sides with the increment of the displacement, the IBI errors slightly reduce, because the influence of the right
part of the body to the RF-signal becomes smaller. In regard to the size of tag array, we note that the IBI error
also decreases when we use more tags as shown in Figure 16(f). We also find that the 2 × 2 tag array has slightly
lower IBI errors compared with the 2 × 3 tag array. It is probability because the distance between adjacent tags
in the 2 × 3 tag array is relative smaller, and the small distance affects the signal of nearby tags. In this case,
the distance between adjacent tags have larger influence compared with the increment of tag number. Overall,
the results indicate that RF-ECG can benefit from the increased numbers of tags for comprehensive heartbeat
monitoring based on our model.

5.3 IBI Estimation with Different Users and Different Number of Users
Experimental results show that RF-ECG achieves good IBI accuracy with different users, ages and genders. Next we
examine the robustness of RF-ECG by evaluating the IBI accuracy with different users. We ask 15 volunteers (12
males and 3 females) to measure the heartbeat using RF-ECG with the default setup. Figure 17(a) presents the
estimation IBI results of each user. We find the IBI errors are similar across different volunteers. Specifically, the
average IBI errors of all the volunteers are within 35ms , while four of them are within 20ms . We note that two of
the three girls have average IBI error within 20ms . In regard to the old man (e.g., User 12), we can also achieve an
IBI error of 25ms , which is comparable with other users. In regard to the difference of IBI errors across different
users, we think it may be caused by the different body shapes of the volunteers, which may distort the wireless
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Fig. 18. IBI accuracy across different user conditions.

signal differently and lead to different IBI errors. Therefore, it is convincing that RF-ECG is applicable to monitor
different users regardless of the genders or ages.

Moreover, we also examine the performance of RF-ECG, when multiple people are in the monitoring range of
RF-ECG at the same time. Particularly, we consider three typical scenarios: 1) one target user for IBI monitoring
with one bystander, where the bystander just stands around the target user without attaching any RFID tags; 2)
two target users for IBI monitoring simultaneously; and 3) one target user for IBI monitoring with a moving
man, where the man keeps walking randomly around the target user to change the ambient environment. We
compare the IBI errors of the three scenarios with the default scenario, where only one target user is in the
monitoring range of RF-ECG. Figure 17(b) presents the estimation results for the four scenarios. We find that we
can achieve similar estimation accuracy, even though one bystander is around the target user. It indicates RF-ECG
can efficiently distinguish the target user from other people for IBI estimation. Moreover, when we monitor the
IBI of two target users simultaneously, the IBI errors increase to about 30ms . The reason is that the RFID system
utilizes the slotted ALOHA protocol for the tag identification, so the increment of target user number will reduce
the sampling rate for each tag, affecting the final accuracy of IBI estimation. However, the IBI errors of about
30ms can still provide sufficient information for the treatment of heart diseases. Besides, when a man is walking
around the target user, the estimated error increases to 39ms , which indicates the change of ambient environment
will affect the measuring result to some extend. Therefore, the stability of ambient environment will improve
the estimation accuracy during the monitoring. On the other, in the last case RF-ECG can still achieve 39ms
estimation error, indicating the IBI estimation can be still used as the clue for the treatment of heart diseases.

5.4 IBI Estimation with Different Conditions and Activities
RF-ECG can achieve an average IBI error of 25.6ms when the user is under different conditions. We further evaluate
the performance of RF-ECG, when the users measure the heartbeats in different conditions. In particular, six
conditions, i.e., hold breath, sit, stand, sleep, recline and after exercise, are considered in our experiments. Normally,
the volunteer sits on the chair to measure the heartbeat. For the stand case, the volunteer stands still in front of
the antenna; for the sleep case, the volunteer lies on the bed under the antenna; for the recline case, the volunteer
reclines on the safe in front of the antenna. As shown in Figure 18(a), we use boxplot to show the distributions
of IBI errors of each condition. We find the average IBI errors are all below 30ms , which represents the high
accuracy of RF-ECG. When the volunteer holds the breath, we achieve the small IBI error of 16ms , because the
chest movement is minimized in this condition. For the sleep case, we also achieve very small IBI error of 14ms ,
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Fig. 19. IBI curve comparison with the ECG groundtruth.

because the human body is usually still during sleeping, leading to small noise. As the volunteer stands up, the
variance of IBI error increases. This is because the human body can unavoidably waggle when standing up, which
introduces some signal noise. When the volunteer reclines on the sofa, the IBI error is a little larger than other
cases, because this posture may distort the relative positions of tag array, and finally affect the IBI estimation.
When the user measures heartbeat after exercising, we can still achieve a small IBI error. The reason is that after
exercising, the heart will beats quickly and intensely, which leads to clear reflection for estimation. But since the
heart rate changes quickly after exercise, the variance is also larger than other conditions.
In addition to these monitoring conditions, we also consider some typical small activities in daily life. In

particular, talking, snoring, typing, drinking and page turning are considered in our experiments. Three young
men perform these activities during the IBI monitoring. Figure 18(b) compares the corresponding IBI errors of
these activities with the default scenario, when the volunteers sit still with no activities. We find that the talking
and snoring activities have similar IBI error with the nothing case, because talking and snoring only incurs small
chest movement like breathing. As for the other three cases, since they all incur small body movement during
the activities, we need to cancel the phase distortion due to the activities. These cancellation can not perfectly
remove the phase distortion, leading to residual phase noise and large IBI errors. Overall, the IBI errors are all
below 40ms , which indicates RF-ECG can efficiently monitor the IBI during the small activities.

5.5 Comparison of IBI Curve
Experimental results show that RF-ECG is able to capture the fine-grained feature of HRV from the estimated IBI. We
compare the detailed IBI curve with the ECG groundtruth of two different conditions as shown in Figure 19. The
IBI curve depicts the variation trend of estimated IBIs in time domain. Based on the comparison, we find the
IBI curve of RF-ECG is close to the ECG ground truth and the peaks are matched perfectly. When the volunteer
measures the heartbeat in a default sitting condition, we find a period pattern of the IBI curve in Figure 19(a). In
actual, such periodic pattern of IBI sequence is called Respiration Sinus Arrhythmia (RSA), which has been used
as an index of cardiac vagal function [29]. The periodic ups and downs of the IBI values is along with the chest
movement due to respiration. Therefore, the results indicates that the IBI estimation from RF-ECG is able to
conduct fine-grained HRV analysis. Figure 19(b) shows the slow down of heartbeat after exercising. The matching
curve indicates RF-ECG can accurately detect the variation of IBI due to exercises. Moreover, at the end of the
curve, we also detect the RSA phenomenon, which shows the efficiency of RF-ECG. The results indicates that
RF-ECG is able to efficiently detect the variation of IBI due to different reasons, e.g., exercise or RSA.
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Fig. 20. IBI accuracy across different kinds of clothes and denoising methods.

5.6 IBI Estimation with Different Kinds of Clothes
RF-ECG can achieve less than 27ms average IBI errors for different kinds of clothes. Next, we evaluate the impact of
the clothes type on the IBI estimation. Three types of clothes are considered in our experiments: tight clothes,
loose clothes and directly on the body 1. Figure 20(a) presents the IBI results of the three types. We find that
tighter clothes can achieve smaller IBI errors, because the tags are closer to the heart with the tighter clothes and
thus can receive clearer heart signal. However, the impact of the tightness of clothes is relatively small, as we can
still achieve high IBI accuracy (i.e., 26.3ms error) based on the loose clothes. Therefore, RF-ECG is suitable to
handle different tightness of the clothes for the IBI estimation.

5.7 IBI Estimation with/without Denoising Method
The denoising method proposed in RF-ECG can efficiently remove the noisy signal for accurate IBI estimation. Finally,
we examine the effectiveness of the denoising method in RF-ECG by comparing the IBI errors estimated based
on the denoised signal and the raw signal without denoising method. Figure 20(b) presents the comparison of
the corresponding IBI errors. It is clear that the denoised signal outperforms the raw signal, which is about 4
times better on the IBI error. Even though the raw signal contains the signal change due to the heart beat, it also
contains different kinds of noisy signals (e.g., the chest movement and body movement). Therefore, the denoising
method in RF-ECG is essential and efficient for the accurate IBI estimation.

6 DISCUSSION
Limitations. Even though RF-ECG can achieve accurate IBI estimation compared with the traditional ECG-
based approaches, there are still some limitations when performing RF-ECG in the real environments. 1) Due
to the limitation on the communication range of RFID tags, the users are supposed to be close to the antenna
(within 3m) for accurate and efficient HRV measurement. Based on the understanding, indoor HRV monitoring is
more suitable, where one RFID antenna can cover the primary activity area in the room. Therefore, the larger
monitoring range indicates we need to deploy more RFID antennas to cover all the monitoring area. 2) Based on
our sensing model, the ambient environment around the tag array is supposed to be relatively stable, so that
the signal interference can be well canceled to extract the reflection signal. Therefore, the frequent and large
activities may unfortunately distort the ambient environment and lead to large errors of HRV estimation. To

1The tag is first sticking on the silicone gel sheet, and then sticking them all on the chest.
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handle the unavoidable activities in daily life, we can segment the signals according to the large activities and
focus on the periods without the large activities to estimate the HRV information. For example, we can monitor
the users when they are sleeping or sitting for resting.
Comparisonwith wearable devices.Wearable sensors (e.g., wrist band or belt) have brought great convenience
in the perception of heart rate, especially when the user is performing exercises. Currently, the wearable devices
usually only provide coarse-grained heart rate estimation over a period of time, which is a helpful metric for
efficient exercising and training. In contrast, RF-ECG is designed to monitor the heart beat like the traditional
ECG through a wireless manner in a relative stationary environment, and the user is supposed to sit quietly or
sleep. Hence, RF-ECG can achieve the fine-grained IBI information from the stationary environment. But the user
need to deploy different RFID devices to extend the monitoring scope, e.g., one antenna for sleep monitoring
in the bedroom and another antenna for daily monitoring in the living room. However, when RF-ECG need
to monitor multiple users, we can easily deploy multiple tag arrays on different people, which may only cost
about one dollar based on the cheap passive RFID tags. Therefore, RF-ECG is more suitable for the stationary
monitoring, especially monitoring at a certain place, and is more easier to extend to multiple users.
Future Work. Currently, RF-ECG is designed to estimate the fine-grained IBI values in the stationary environ-
ments, which is an interesting attempt to estimate the heart beat interval based on COTS devices. In the future,
we will keep improving the performance of RF-ECG by extending the application from two aspects. On one hand,
we will try to improve the accuracy of IBI estimation, so that RF-ECG can provide more efficient and accurate
information for the treatment of heart problem. On the other hand, we will try to improve the robustness of
RF-ECG, so that RF-ECG can provide the IBI estimation when the user is doing different kinds of activities.

7 CONCLUSION
In this paper, we propose RF-ECG that leverages a COTS RFID tag array to extract the detailed Inter-Beat Interval
(IBI) for the Heart Rate Variability (HRV) analysis. The users only need to wear the clothes with the RFID tag
array attached in the chest area. In particular, we develop a mechanism to eliminate the respiration signal by
capturing the RF-signal variation of the tag array caused by the moving effect associated with respiration. Further,
we build a reflection model to depict the relationship between the RF-signal variation from the tag array and the
reflection effect from the heart beat. By leveraging the reflection model, we are able to fuse multiple reflection
signals from the tag array for accurate estimation of HRV. We implement our RF-ECG system and examine it with
15 volunteers. Experiment results show that RF-ECG can achieve a median IBI error of 24ms , which is a strong
evidence of the feasibility and effectiveness of RF-ECG. Our approach demonstrates a low-cost and convenient
solution to provide accurate Heart Rate Variability assessment via RFID tags.
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